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Abstract: Woody plant encroachment into grasslands ecosystems causes significantly ecological
destruction and economic losses. Effective and efficient management largely benefits from accurate
and timely detection of encroaching species at an early development stage. Recent advances in
unmanned aircraft systems (UAS) enabled easier access to ultra-high spatial resolution images at a
centimeter level, together with the latest machine learning based image segmentation algorithms,
making it possible to detect small-sized individuals of target species at early development stage
and identify them when mixed with other species. However, few studies have investigated the
optimal practical spatial resolution of early encroaching species detection. Hence, we investigated the
performance of four popular semantic segmentation algorithms (decision tree, DT; random forest, RF;
AlexNet; and ResNet) on a multi-species forest classification case with UAS-collected RGB images in
original and down-sampled coarser spatial resolutions. The objective of this study was to explore
the optimal segmentation algorithm and spatial resolution for eastern redcedar (Juniperus virginiana,
ERC) early detection and its classification within a multi-species forest context. To be specific, firstly,
we implemented and compared the performance of the four semantic segmentation algorithms with
images in the original spatial resolution (0.694 cm). The highest overall accuracy was 0.918 achieved
by ResNet with a mean interaction over union at 85.0%. Secondly, we evaluated the performance
of ResNet algorithm with images in down-sampled spatial resolutions (1 cm to 5 cm with 0.5 cm
interval). When applied on the down-sampled images, ERC segmentation performance decreased
with decreasing spatial resolution, especially for those images coarser than 3 cm spatial resolution.
The UAS together with the state-of-the-art semantic segmentation algorithms provides a promising
tool for early-stage detection and localization of ERC and the development of effective management
strategies for mixed-species forest management.

Keywords: forest classification; aggressive native species; invasive species; biodiversity; remote
sensing; UAV; machine learning; deep learning

1. Introduction

Woody plant encroachment affects ecological stability and causes significant economic
loss worldwide [1-3], especially in semi-arid and sub-humid grasslands and savannas [4,5].
As the encroachment progresses, species composition and community, and ecosystem
servicesincluding biodiversity, biogeochemical and hydrological cycles can shift at the
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local and regional scales [6-8]. Encroaching species are currently being managed using
mechanical (e.g., prescribed fire, grazing and felling) or chemical approaches (e.g., herbi-
cide) [9-11], which are costly and sometimes lead to severe ecological destructions [11]. In
the Great Plains of the U.S., eastern redcedar (Juniperus virginiana, ERC) is one of the most
aggressive species that encroaching the grasslands [7,12-19]. Managing ERC in encroached
sites can become costly over time with an increase in density and size of the species, which
lead to ecological and economic consequences (e.g., changing ecosystem functioning and
reducing livestock production) [20]. Therefore, early detection and control of woody plant
encroachment are critical for ecological and cost-effective management practices.

Remote sensing has been used in forest classification, species distribution mapping
and invasive species detection for several years [5,17,21-30]. With the development of
remote sensing technologies, satellites can now provide images in a spatial resolution as
high as a few decimeters, e.g., WorldView-4 provides images in 0.31 m spatial resolution.
Images from manned aircrafts with high spatial resolution are also readily available from
public and commercial sources, e.g., free images in 0.6 m spatial resolution by the national
agriculture imagery program (NAIP). However, it is difficult to use these images with
coarse spatial resolution for detecting seedlings or small-sized plants, and plants mixing
with other species. If a small ERC had a canopy diameter around 1 m, it would only
show as 3 x 3 pixels in a remote sensing image with a spatial resolution at 30 cm. For
encroaching plants mixing with other species, at the boundary of the plants, there are many
mixed pixels that cover both encroaching plants and the other species. These challenge
accurate species detection and classification, as the texture features are missing with a very
limited amount of pixel numbers, not to mention the issue of mixed pixels on the edges of
a target. Thus, the accurate early detection of ERC and its detection within a multi-species
forest context will be greatly beneficial from remote sensing images in a centimeter level
spatial resolution. As satellite and manned aircraft remote sensing technologies continue
to advance rapidly, unmanned aircraft systems (UAS) emerge as a new player in this arena
and provides us a handy platform to acquire imagery in an ultra-high spatial resolution
usually at or higher than the centimeter level. Though UAS have their own limitations such
as the short flight endurance (up to five hours for consumer grade fixed-wing UAS with
battery power [31]), they offer an opportunity to test the potential of future technologies
that the other platforms are quickly evolving into.

Various machine learning algorithms have been applied for vegetation mapping in
remote sensing. Among them, object-based classification is a classical and well-recognized
approach to classify different vegetation covers with the advantages of quick and accurate
classification based on an object’s spectral, textural, and structural features and removing
the salt-and-pepper effect compared with other classification approaches that are based
purely on single pixels [32]. With the advent of ultra-high resolution aerial imagery and
high performance computing systems, convolutional neural network (CNN) based deep
learning algorithms have started to be investigated more and more in remote sensing based
vegetation mapping [22]. Studies can be found in exploring applications of various CNN-
based pixelwise classification or object detection models, including forest mapping [33-35],
dynamic change monitoring [36], and invasive species encroachment assessment [37].
CNN models for region-based classifications can be trained with information included in
rectangular bounding boxes of the whole individual objects [22]. However, delineating the
targeted plant from the background and monitoring its progress and increase in size over
time is one of the key topicsin remote sensing for woody plant encroachment. In addition,
plants are irregularly shaped and in various sizes based on stage of growth. In these cases,
CNN-based pixelwise classification models showed advantages with input patches of the
same image size (instead of plant size) and class name labelled in the center pixel of the
patch. That means, with the limited samples of individual object, the vegetation mapping
or classification task can be accomplished using CNN-based pixelwise models with less
raw images in higher spatial resolution.
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UAS imagery in a centimeter level spatial resolution has shown great potential of
precisely detecting the location and estimating the size of vegetation plants [28,38—-40] as
well as differentiating among species, which can be challenging for imagery in lower spatial
resolutions. This benefits from the detailed spectral or morphological information offered
by the images which also enables the utilization of various classical and state-of-the-art
machine learning algorithms. Random forest, maximum likelihood classifier, and support
vector machine techniques are commonly used machine learning classifiers in vegetation
classification [40-42]. Besides the classical machine learning algorithms, rich information
included in the ultra-high resolution images can be well utilized by the CNN-based deep
learning models, with which a series of features are automatically extracted using the
convolutional layers [43]. Various studies used machine learning-based [39,40] and CNN-
based [44,45] classification methods for encroaching species mapping. The CNN-based
classification methods gained promising results for encroaching species mapping [46].
However, encroaching species with small plant size and mixed with other species at early
encroaching stages make the classification task more challenging. The promising result
and the challenging environmental context inspired us to investigate the application of the
machine or deep learning-based algorithms on an encroaching species classification in a
multi-species terrestrial ecosystem.

There were two major research questions we were trying to answer in this study:
first, what are the performances of those popular classification algorithms on ERC seg-
mentation within a multi-species forest context? Second, what is the optimum spatial
resolution of the UAS imagery to have a trade-off between the segmentation performance
and spatial coverage? Therefore, the objective of this study was to evaluate the per-
formance of a few popular semantic segmentation algorithms and an optimal spatial
resolution for ERC early detection and its classification within a multi-species forest
context. Specifically, we evaluated the segmentation performance (1) of four popular
semantic segmentation algorithms with UAS images in their original spatial resolution;
and (2) at different spatial resolutions by down-sampling the UAS images to a series
of coarse spatial resolutions. Recommendations from this study can be helpful in the
monitoring of encroaching species dynamics and the decision making of management
strategies in grasslands ecosystems.

2. Materials and Methods
2.1. Study Area and Data Acquisition System

UAS images were collected at a University of Nebraska-Lincoln rangeland property
(41°05'05.2"N, 100°45'53.7""W) located in North Platte, Nebraska (Figure 1a,b). The total
study area was 17,673 m? (4.37 acres). There were five tree species: eastern redcedar
(Juniperus virginiana), ponderosa pine (Pinus ponderosa), Scots pine (Pinus sylvestris), green
ash (Fraxinus pennsylvanica), and hackberry (Celtis occidentalis). The five types of tree species
were at different stages from small sized seedlings to their full, mature size. To differentiate
ERC with pines especially at early stage, the five tree species were grouped into three
classes in our study (Figure 2): the ERC class which was the species of interest, the pine
class including ponderous pine and Scots pine, and the defoliation class including green
ash and hackberry. A fourth class was also created, namely others class, including grass,
bare soil, and snags (felled trees).
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Figure 1. The study area located in North Platte, Nebraska (a); an overview of the study area with
the orthomosaic (b); the UAS used in this study (c); and the RGB camera mounted on the UAS (d).

Patch (model input) Target (center pixel)

Others 4 Others
[[J Redcedar 4 Redcedar
DDefoIiation ¢ Defoliation
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Figure 2. Example image patches of the four classes in this study: (a) is an example raw image
collected from the UAS; (b) is a sample patch of redcedar class; (c) is a sample patch of defoliation
class; (d) is a sample patch of pine class; and (e—g) are example patches of others class. Each patch
was the input of the AlexNet and ResNet in this study with size of 227 x 227 x 3 or 224 x 224 x 3.
The target of the models was the class for the center pixel.
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A rotary-wing UAS (Matrice 600 Pro, DJI, Shenzhen, China) with an RGB camera
(Zenmuse X5R, DJI, Shenzhen, China) (Figure 1c,d) was flown over the study area at an
altitude of 30.5 meters above the ground level on 18 May 2019 with the front and side
overlaps of 90% and 85%. RGB imaging was selected in this study considering its popularity
and low-cost in UAS applications. Two hundred and fifty-three RGB images were collected
in total over the study area, each with a size of 4608 x 3456 pixels. Six ground control
points were distributed across the study area and their geolocations were surveyed with
a survey-grade RTK GNSS system. The images were stitched into an orthomosaic in an
original spatial resolution of 0.694 cm using Pix4Dmapper software (PIX4D, Lausanne,
Switzerland). Geometric correction was performed during the processing by correcting the
geolocation of the orthomosaic with those surveyed by the RTK GNSS system.

2.2. Data Pre-Processing

Raw images collected with the UAS and four cropped segments from the orthomosaic
were used to randomly sample patches as input for machine learning algorithms. Data
balance was considered among the four classes (redcedar, pine, defoliation, and others)
when we did the random sampling process (i.e., equal samples for each class). The purpose
of having both the orthomosaic cropped segments and raw images was to include various
angles of view for the same objects serving as a natural augmentation of the training
dataset. In total 72 full-size images (3456 x 4608 pixels) were prepared for patch sampling,
including 68 raw images and 4 cropped segments from the orthomosaic. The spatial
resolution was 0.694 cm for the orthomosaic cropped segments, which varied slightly for
the raw images. Image patches sampled from 65 out of the 72 images were used as the
training set, and the patches sampled from the remaining seven images were used as a
testing set. There were patches generated from both raw images and orthomosaic included
in both training and testing sets. This resulted in 40,000 training patches, 8000 patches for
validation, and 8000 testing patches for both AlexNet and ResNet.

The boundary of each tree was manually delineated as polygon shapefile in ArcGIS
(ESRI, Redlands, CA, USA). The shapefiles were converted to the raster type with the
targeted spatial resolution. To evaluate the model performance on images with coarse
spatial resolutions, raw images and the cropped segments were downsampled using
bilinear interpolation from an original spatial resolution of 0.694 cm to a series of resolutions
ranging from 1 cm to 5 cm with a 0.5 cm interval.

2.3. Semantic Segmentation Algorithms and Hyperparameter Fine-Tuning

Semantic segmentation, or CNN-based pixelwise classification in this study, was a tech-
nique to assign a class label to each pixel with contextual information in an image [47-49].
The CNN-based pixelwise classification model in this study includes information within a
patch from the center pixel that we are interested in [49-51]. It provided detailed informa-
tion on the location and size of the targets which were useful in mapping forest species
and monitoring their dynamic. Four widely used classical and state-of-the-art semantic
segmentation algorithms were evaluated in this study: decision tree (DT), random forest
(RF), AlexNet, and ResNet.

Decision tree and random forest algorithms were implemented with Python 3.7 in
Spyder IDE with sklearn library on a desktop computer. This computer has a CPU of Intel®
Core™ i9-7980XE @2.60GHz, a GPU of NVIDIA GeForce RTX 2080 Ti with a memory of
42.9 GB (11.0 GB dedicated GPU memory and 31.9 GB shared GPU memory), and a RAM of
64 GB. The AlexNet and ResNet algorithms were implemented with keras and tensorflow
libraries at a performance computing facility (Holland Computing Center) at the University
of Nebraska to speed up the training process with parallel computing. The configurations
of the HCC cluster used in this study were: RAM of 32 GB, 2 GPUs of NIVIDIA Tesla V100
with 32 GB memory, and 16 tasks per submitted node.
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2.3.1. Decision Tree and Random Forest

Decision tree classified each sample as one class using decision functions [52]. It can be
illustrated by a tree-like diagram consisting of decision nodes, chance nodes and terminal
nodes [23]. Random forest used many small decision trees as base level classifiers [24,53].
Each tree was trained on a sub-dataset of samples randomly selected from the training
dataset. For an individual training sample, a class was assigned with majority votes among
all the decision trees [54].

The output of the decision tree and random forest algorithms was the predicted class
label of each targeted pixel, i.e., the ERC class, the pine class, the defoliation class, or the
others class. The input variables of the algorithms were features extracted from the pixel
and its neighbors. In this study, we selected ten input variables: digital numbers of red,
green, and blue bands, averaged digital numbers of a 3 x 3 neighborhood centered the
target pixel in each of the three bands, and four features (contrast, homogeneity, energy,
and correlation) extracted from the gray level co-occurrence matrix (GLCM) calculated on
a 227 x 227 neighborhood [55,56].

2.3.2. Convolutional Neural Networks

AlexNet and ResNet algorithms were selected as the two CNN algorithms comparing
with the two classic machine learning algorithms. CNN had been proved to be successful
in semantic segmentations [26,27,43,44,57]. Comparing with the two classic machine
learning algorithms where manually extracting features from an image, CNN algorithms
automatically extracted, and selected features with various filters and techniques during
the training process which tends to be much more effective than many other algorithms [43].
The AlexNet used in this study reserved its original architecture as shown in Table 1 [58].
Relu activation method was used for each convolutional layer with 12 regularizer and dense
layer, and softmax activation method was used for the last dense layer. A moderate dropout
rate of 0.5 was adopted for the first two fully connected layers in AlexNet to regularize
the model and prevent overfitting. Adam optimizer was used with a learning rate of
0.001. ResNet used residual blocks to make shortcut connections between convolutional
layers (Table 2) [59], which offers a higher classification performance without a significant
increase of computational burden [60]. Relu activation and batch normalization methods
were used for each convolutional layer, and softmax activation method was used for the
last dense layer. Adam optimizer was used with learning rate of 0.001. The input of the
AlexNet and ResNet algorithms was RGB image patches in the size of 227 x 227 pixels for
the AlexNet and 224 x 224 pixels for the ResNet. The output of these two algorithms is
the class of the pixel at the center of each image patch. Hence, though we used “pixelwise
classification”, the classifications were really made not only based on single pixels but also
the surrounding pixels which were the patches in our case.

Table 1. The architecture of AlexNet used in this study with an input dimension of 227 x 227 x 3.

Layer Filter Size Stride Number of Filters Output Dimension

Convolutional layer 1 11 x 11 4 96 55 x 55 x 96

Max pooling layer 1 3x3 2 / 27 x 27 x 96
Convolutional layer 2 5x5 1 256 27 x 27 x 256

Max pooling layer 2 3x3 2 / 13 x 13 x 256
Convolutional layer 3 3x3 1 384 13 x 13 x 384
Convolutional layer 4 3x3 1 384 13 x 13 x 384
Convolutional layer 5 3x3 1 256 13 x 13 x 256

Max pooling layer 3 3x3 2 / 6 X 6 x 256
Fully connected layer 1 / / / 4096
Fully connected layer 2 / / / 4096
Fully connected layer 3 / / / 4
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Table 2. The architecture of ResNet-50 used in this study with an input dimension of 224 x 224 x 3.

Layer Filter Size Stride Number of Filters Output Dimension
Convolutional layer 1 7x7 2 64 112 x 112 x 64
Max pooling layer 1 3x3 2 / 56 x 56 x 64
[1x1 1 64
Convolutional layer 2 3x3 1 64 | x3 56 x 56 x 256
| 1x1 1 256
[ 1x1 2 128
Convolutional layer 3 3x3 2 128 | x4 28 x 28 x 512
| 1x1 2 512
[ 1x1 2 256
Convolutional layer 4 3x3 2 256 | x6 14 x 14 x 1024
| 1x1 2 1024
[ 1x1 2 512
Convolutional layer 5 3x3 2 512 | x3 7 x 7 x 2048
| 1x1 2 2048
Average pooling layer1 7 x 7 1 / 2048
Fully connected layer1 ~ / / / 4

2.3.3. Model Hyperparameters Fine-Tuning

The four algorithms were fine-tuned with different hyperparameter settings to achieve
the highest performance for our dataset and application. Two hyperparameters were fine-
tuned in training the decision tree: the minimum number of samples required to split an
internal node (ranging from 2 to 50 with an interval of 2), and the minimum number of
samples required to be at a leaf node (ranging from 1 to 10 with an interval of 1). Similarly,
the hyperparameters fine-tuned for random forest algorithm were the maximum number
of depths in each decision tree (ranging from 10 to 50 with an interval of 2) and the number
of trees in the forest (ranging from 10 to 100 with an interval of 5). Other hyperparameters
of decision tree and random forest keep the default value of decision tree classifier and
random forest classifier from the sklearn library in Python 3.7. Three different batch
sizes of 4, 32, and 128 were tested for the two CNN algorithms with 100 epochs for each
algorithm [61]. Other hyperparameters (e.g., activation, regularizer) were fixed with the
default value of the keras library in Python 3.7.

2.4. Semantic Segmentation Performance Evaluation

Semantic segmentation was performed using the well-trained algorithm with the same
input size as required by the algorithm (i.e., 227 x 227 x 3 for AlexNet and 224 x 224 x
3 for ResNet). The performance was evaluated with different datasets: algorithm testing
performance was evaluated with the testing dataset, research area segmentation visualization
was performed with input pixels of every 50 columns and every 50 rows, testing performance
of different spatial resolutions, and individual ERCs were evaluated with all pixels in the
image. Overall accuracy (OA) and intersection over union (IoU) were used to evaluate the
performance of the four semantic segmentation models. The OA (Equation (1)) was the
total number of true positives divided by the number of all samples [62,63]. The higher OA
value, the more correctly classified samples among the entire samples among the dataset. IoU
(Equation (2)) was a parameter calculated by the number of samples intersection divided by
that of union [64], or the ratio between the number of true positive and the sum of the number
of true positives, false positives, false negatives [65]. The higher IoU of ith class (Ioll;), the
fewer samples with wrong predictions or misclassified of ith class.

" TP
A === 1
@) N €]
TP,
IoU; : ()

~ TP, + FP, + FN;’
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where N was the number of all samples, n was the number of classes, TP;, FP;, FN; were
the number of true positive, false positive, and false negative samples for ith class.

In addition, we reported precision, recall, and F1 score of each algorithm. Precision
was the fraction of true positive sample number among all true positive and false positive
sample number (Equation (3)). Recall was the fraction of true positive sample number
among all true positive and false negative sample number (Equation (4)). F1 score con-
sidered both the precision and the recall to measure an overall performance for different
classes (Equation (5)). Precision and recall indicated the ratios of correctly classified sample
numbers among the sample number of predicted, and ground truth ith class, respectively.
F1 score was a weighted average of precision and recall.

TP,
Precision; = WZFP/ 3)
TP
Recall; = ——1L .
eh ' TPi + FNZ ( )
F1, =2 x Precision; X Recall; 2x TP -

Precision; + Recall; 2 x TP; + FP; + FN;’

3. Results
3.1. Semantic Segmentation Performance of Individual Algorithms with Images in Original
Spatial Resolution

Semantic segmentation performance of the four popular algorithms (i.e., decision tree,
random forest, AlexNet, and ResNet) was evaluated with UAS images in their original spa-
tial resolution using the same training and testing datasets to gain fair comparison. Among
the four semantic segmentation algorithms, ResNet showed the best performance (Table 3)
after hyperparameters fine-tuning. ResNet with a batch size of 32 had the highest OA (0.918)
and mloU (85.0%) on the multi-species classification with the images in original spatial res-
olution (0.694 cm). In general, among the four algorithms, CNNss (i.e., AlexNet and ResNet)
gained higher performance than classical machine learning algorithms (i.e., decision tree
and random forest) for this case study with complex multi-species forest environment
settings. The decision tree had the lowest OA (0.610) and mIoU (44.7%). Random forest,
with an OA of 0.666 and a mloU of 50.7%, performed slightly better than the decision tree.
AlexNet resulted in an OA of 0.878 and a mIoU of 78.2%, while ResNet resulted in an OA
of 0.918 and a mloU of 85.0%.

Table 3. Overall performance of the four semantic segmentation algorithms on multi-species forest classification from UAS

images in their original spatial resolution (0.694 cm).

Algorithms Overall mloU (%) IoU of IoU of IoU of Pine IoU of Others
Accuracy Redcedar (%) Defoliation (%) (%) (%)
Decision Tree 0.610 447 61.3 31.7 41.2 448
Random Forest 0.666 50.7 68.7 35.7 47.2 51.1
AlexNet 0.878 78.2 79.5 72.8 81.5 79.1
ResNet 0.918 85.0 86.3 80.1 90.6 82.8

AlexNet and ResNet gained highest OA of 0.878 and 0.918, mloU of 78.2% and 85.0%,
respectively. The performances of AlexNet and ResNet with different batch sizes were
evaluated with x axis of performance name and y axis of performance value (Figure 3).
In general, OA and mloU decreased with an increasing number of batch size for the
two algorithms. AlexNet algorithms’ performance dropped more quickly than those
of ResNet. Especially for large batch size (i.e., 128), the OA of ResNet was still greater
than 0.9 (i.e., 0.903), while that of AlexNet was 0.828. From the perspective of batch size,
ResNet was robust for this multi-species forest classification problem. For IoUs of the
four classes, the pine class gained the highest IoU for almost every algorithm (except
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AlexNet with a batch size of 32). The defoliation class gained lowest IoU for almost every
algorithm (except AlexNet with a batch size of 128). In other words, the pine class was
the one that had the highest accuracy to be segmented, followed by redcedar and others
classes, and the defoliation class was the one with the lowest accuracy. There was not a
significant impact on the hyperparameter fine-tuning for decision tree and random forest
algorithms though.

1.0
m AlexNet (4)
09 m AlexNet (32)
AlexNet (128)
08
m ResNet (4)
0.7 | m ResNet (32)
ResNet (128)
06
Overall mloU loU of loU of loU of loU of others
Accuracy redcedar defoliation pine

Figure 3. AlexNet and ResNet algorithms’ performances with different numbers of batch size (i.e., 4, 32, 128). ResNet
algorithms gained higher performance than AlexNet, while algorithms with small batch size gained higher performance
than those with large batch size. Pine class gained the highest IoU, while defoliation class gained lowest IoU.

3.2. Semantic Segmentation Performance with Images in Down-Sampled Spatial Resolutions

The segmentation and classification performance with images in down-sampled
spatial resolutions were investigated with the algorithm that had the best performance in
the previous section, i.e., the ResNet. Although ResNet with a batch size of 32 showed
slightly higher accuracies than those with the batch sizes of 4 and 128 (Figure 3), the batch
size 4 was used in this section to investigate the performance of down-sampled spatial
resolution to save training time. Figure 4 showed the OA, precision, recall, and F1 score
with the UAS images downsampled to a series of coarse spatial resolutions using the same
number of samples to train, validate and test the model. The OA decreased slowly as
the spatial resolution decreased from original 0.694 cm to 4 cm, then started to decrease
significantly (Figure 4a). The precision, recall, and Fl-score had a similar trend and a
threshold between 3 and 4 cm (Figure 4b—d).

The segmentation performance with UAS images in various down-sampled spatial
resolutions for different classes was presented with precision, recall, and F1 score (Figure 4).
In general, precision ranged from 0.720 to 0.961 for the four classes with UAS images in
various spatial resolutions. For individual class, precision for the others class decreased,
and that of the redcedar class had an obvious decrease. The decreasing trend meant
more samples of defoliation or pine classes were predicted as others or redcedar class in
images of coarser spatial resolutions. The precision of defoliation and pine classes had no
obvious increasing or decreasing trend with UAS images in various spatial resolutions. In
general, recall ranged from 0.476 to 0.945 for the four classes. For individual class, recall of
defoliation class decreased quickly, which meant more samples of defoliation class were
predicted as other classes with coarser spatial resolution images. Others class had the
highest recall value among the four classes with images in nearly all spatial resolutions.
That meant the number of others class samples predicting as other classes were minimum
among the four classes. Recall of redcedar and pine classes had the moderate value among
the four classes.
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Figure 4. OA (a), precision (b), recall (c), and F1 score (d) of ResNet algorithm with UAS images in various down-sampled

spatial resolutions. All showed a decrease trend with decreasing spatial resolution and most of the performances got quick

decrease with images coarser than 4 cm. For ERC segmentation from multi-species forest, 3 cm was a recommended spatial

resolution due to the quick decrease of precision with images coarser than 3 cm.

In general, F1 score ranged from 0.626 to 0.931 with a decreasing trend, especially for
those coarser than 4 cm spatial resolution. For individual classes, the decreasing trend
of defoliation class was more pronounced than other classes, especially for those images
with coarse spatial resolutions. F1 score for redcedar class ranged from 0.783 to 0.899
and exhibited a pattern of “decreasing-increasing-decreasing” with the image resolution
becoming coarser. The peak value before decreasing trend is at 3 cm spatial resolution. To
obtain a high classification performance for the redcedar class, 3 cm would be an optimum
choice for balancing the performance and the spatial resolution. F1 score had similar
pattern for others and pine classes with redcedar class, ranged from 0.812 to 0.919 and
0.838 to 0.923, respectively. Among the four classes, the pine class had the highest F1 score,
especially for those coarse than 4 cm spatial resolution images.

3.3. Visualizations of the Forest Classification

In this section, three examples of multi-species forest classification results derived
from the semantic segmentation model with best performance in this study (ResNet with a
batch size of 4) were visualized, (1) the stitched orthomosaic image, (2) two testing images
with different spatial resolutions, and (3) test images with a single ERC in each image.

Figure 5 showed the classification result of the stitched orthomosaic processed in its
original spatial resolution. All trees were successfully identified though there were errors
on the boundaries, especially for those mixed together. ERCs were shown in the brown
pixels by which their sizes and locations can be further extracted. Figure 6 showed two
testing images processed at their original (ultra-high), 2 cm (medium), and 5 cm (coarse)
spatial resolutions. With the coarse spatial resolution images, the algorithm’s prediction
performance decreased, with most of the wrong predictions existing in tree boundaries.
Nevertheless, regions with different tree species could still be delineated with acceptable
accuracy and consistency when compared with the ground truth.
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Figure 5. Visualization of the multi-species forest classification result: orthomosaic of the study area (left) and the
classification result using images in 0.694 cm spatial resolution and the well-trained ResNet algorithm (right).
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Figure 6. Visualization of examples of multi-species forest classification results with UAS images in original (0.694 cm) and
down-sampled spatial resolutions at 2 cm, and 5 cm. The classification performance reduced as the spatial resolution de-
creased.

Small ERCs can be segmented with ultra-high spatial resolution images but were
difficult to be segmented with coarse spatial resolutions under complex environment
settings, especially for those neighbor pixels that looked similar to ERCs. Figure 7 showed
four ERCs picking up with partial images from the stitched orthomosaic, and segmentation
results predicted by ResNet algorithm with 0.694 cm spatial resolution images were shown
in the first two columns of Figure 7. The well-trained model can predict single trees, even
those with a diameter of less than one meter. Although there were errors at the boundary
of trees, the segmentation results were acceptable with their location, shape, and size
reasonably identified. Segmentation results predicted by ResNet in the down-sampled
spatial resolution at 5 cm images shown in the last two columns of Figure 7. Small ERCs
with a diameter less than 1 m failed to be segmented in the spatial resolution at 5 cm, where
all pixels were predicted as others class.
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Figure 7. Classification results of cases for small individual ERCs with the ResNet algorithm and UAS images in their
original (0.694 cm) and downsampled (5 cm) spatial resolution. In this study, ERCs with a diameter less than 1 m were
able to be accurately classified and delineated in the images with the original resolution but failed to be detected when the
spatial resolution decreased to 5 cm.

4. Discussion
4.1. Opportunities and Challenges in ERC Early Detection with High Spatial Resolution Remote
Sensing Imagery

ERC encroachment has been caused great ecological and economic issues on the
Great Plains [5,30]. With the encroaching of ERC in the grasslands, ecological destruction
and land management costs are increasing to remove fast growing ERC from the original
ecosystem. An early detection on ERC and a close monitoring of their encroaching and
infilling rates can significantly decrease the destruction and costs in ERC management
while increasing its management efficiency and success. However, most of the efforts so far
on using remote sensing approaches for ERC encroaching and infilling status monitoring
are mainly based on imagery from satellite and manned aircraft with a coarse or medium
spatial resolution [5,66]. Despite the decent results obtained by many of them over a
regional scale, they often excluded or had lower performance at the areas with low canopy
covers due to the inherent challenges of detecting low canopy cover with remotely sensed
imagery in a low spatial resolution [30]. Basically, with the limited spatial resolution, most
rts relied on the relationship established between the ground truth and the
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remotely sensed spectral reflectance in each band. This type of method is fairly efficient
and practical in roughly estimating forest components and encroachment mapping but is
not capable enough to identify small tree canopies or the change of infilling rate in time,
which are critical in ERC management.

This study used UAS imagery to investigate its capability on ERC early detection and
mapping with the hope that the findings of this study can be applied to other types of
high spatial resolution remotely sensed imagery. With the rapid advance of the remote
sensing technologies, we noticed the trend of convergence for some functions of the various
platforms, i.e., the remote sensing satellites, airplanes, and unmanned aircraft systems
are evolving to provide us imagery in higher spatial and temporal resolutions and larger
spatial coverages at the same time. There are commercial remote sensing satellites that
provide meter or sub-meter level imagery (e.g., WorldView, Planet Labs), and commercial
off-the-shelf UAS systems that can fly up to five hours (e.g., HSE SP9, Casselberry, FL,
USA [31]). We believe it is the right time to study the potentials of high spatial resolution
imagery on the management of encroaching tree species.

One of the major issues of forest classification with the high spatial resolution imagery
is how to utilize the rich information in the imagery. Besides the spectral features that are
typically used, we now have multiple or many pixels in the same area which can provide
textural or structural features of the tree canopies. This on one side provides greatly
more details for us to differentiate objects, but on the other side makes it a meaningful
research topic to see how this information can be utilized to achieve better canopy detection
and classification results. The effort of this study demonstrated the performance of the
classical machine and deep learning models on effectively utilizing this rich information to
accurately classify early stage ERCs and their infilling rates in the multi-species context.

4.2. CNN-Based Models Improve Data Utilization of Ultra-High Spatial Resolution Imagery for
Multi-Species Classification

The semantic segmentation or CNN-based pixelwise classification used in this study
can not only classify and localize the woody species but also delineate their detailed
shape and boundaries. This is especially useful for delineating the boundaries of ERCs
and monitoring the progress of their encroaching and infilling rates over time to derive
precision and appropriate management strategies.

The ultra-high spatial resolution imagery used in this study enabled a better utilization
of CNN-based semantic segmentation models compared with non-CNN-based classifica-
tion models. CNN-based models were trained with raw images and orthomosaic segments
to increase the dataset from multi-view of the objects (i.e., nadir and oblique) [67]. Results
showed that the two CNN-based models used in this study;, i.e., the AlexNet and ResNet,
outperformed the two popular non-CNN based machine-learning models, i.e., the decision
tree and random forest (Table 3). A similar finding was reported in previous studies [43].
Rather than inputting into the models with certain pre-extracted image features, CNN-
based models automatically extract a large number of spatial features with series of filters
in repeated convolutional and pooling layers, which is considered as a primary reason for
their superior performance [58,68]. However, such advantages of the CNN-based models
may not be fully utilized if the image spatial resolution is relatively coarse, which is the
reason why classical single pixel-based classification together with machine learning or
deep neural network models are still preferred methods in many applications especially
with satellite imagery [69,70]. In addition, CNN-based models gained multiple features
from the convolutional layers but required high computational systems and more compu-
tational time, which is the reason why classical object-based non-CNN classification is still
preferred [70,71]. Although classical object-based classification methods showed potential
to classify multiple-species forests with high spatial resolution images [72], they did not
gain high accuracy for this case study. This could possibly be due to the high similarity
among different classes. Fine-tuning the parameters are needed in future studies. More
samples,ofindividual objects are needed to do region-based CNN classification by resizing
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the single images with irregular shapes and different sizes to the same shape and size as
required by the CNN model [49].

Results indicated that the well-trained ResNet algorithm can classify the four classes
among the multi-species forest context (Figures 5 and 6). As shown in the figures, most
of the trees were classified with the shape and size of the tree with ResNet algorithm.
This was consistent with other studies using CNN models and UAS images for forest
mapping [73,74]. The promising results indicated that the state-of-the-art CNN models and
ultra-high resolution images can be applied for other study topics with the classification
purpose. However, there were areas that misclassified even for images with the original
spatial resolution, especially for the tree boundary areas. Take Figure 6 image #370, for
example, at the boundary of the pine class, there were pixels of pine class that misclassified
as ERC class. This phenomenon was because cedar and pine had similar shape and color
information from the top view remote sensing images. In addition, at the boundary of the
defoliation class, there were pixels of others class that misclassified as defoliation class. This
was because of the sparse leaves of defoliation class on 18 May that we collected the image.
The background information that below the ERC canopy was trained with the CNNs. To
solve those misclassification problems, more images that collected with dense canopy cover
or new machine or deep learning algorithms that can be used for encroachment species
detection and mapping are rolling out at a fast pace with better accuracy and computational
efficiency. The promising results on the ERC classification and delineation in both the early
growth-stage singular form and the multi-species context demonstrated the potential of
improvements on the encroachment species detection and mapping that can be achieved
by the high-resolution aerial imagery and appropriate machine/deep learning algorithms.

4.3. Trade-Off between Spatial Resolution and Coverage for Encroachment Species Detection
and Mapping

The goal of our study was to improve the early detection of ERCs when they are
in a small canopy size (less than 1 meter diameter was set in this study) and the precise
delineation of them in a multi-species context. Theoretically speaking, a canopy of any
size can be possibly detected as long as the spatial resolution of the image is high enough;
in practice, however, the image resolution is limited to the imaging system and platform.
This is the primary reason why most of the studies so far had to exclude the areas with
low canopy cover. Hence, the trade-off between spatial resolution and spatial coverage
or cost of images always needs to be taken into consideration [75,76]. With the highest
performance algorithm in this study (ResNet), we identified a threshold of 3 cm as the
lowest image spatial resolution required for a desired multi-species forest classification
result using only the RGB imagery. When the resolution of the RGB images used in this
study was downsampled to be greater than 3 cm, the precision of ERC delineation in a
multispecies context started to decrease significantly (Figure 4b), and the detection of small
singular ERCs with a canopy diameter less than 1 meter was not possible (Figure 7). This
finding may just hold true for this particular dataset collected with the specific camera
and flight configurations and the image segmentation models developed in this study.
For example, if other types of imagery are included such as multispectral images with
near-infrared bands even at a lower spatial resolution [77], other important information
may be given to help differentiate species, then the 3 cm spatial resolution may not be a
necessity. Data (image) spatial resolution, modalities, quality, collection timing or season,
their processing and analysis methods and algorithms, and the complexity of the interested
objects together determine the final classification performance [22,78].

Although higher ERC classification results were reported with CNN-based deep
learning there were challenges in applying the CNN algorithm on coarse resolution images
in this study. In other words, the advantages of the CNN algorithms could not be well
utilized if the image resolution is not high enough. This might be another major reason
for the inferior detection and classification performance when the original images were
dowmnsampled to 3 to 5 cm resolution (Figures 4, 6 and 7). Use the case of a singular ERC
with a diameter of 0.6 m as an example. When the image was downsampled to 5 cm
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resolution, it showed as a patch about 12 x 12 pixels in the image. This patch was too small
compared with the input patch size of ResNet which is 224 x 224 pixels. One potential
perspective is how to better adapt and utilize the latest CNN-based deep learning on the
relatively lower resolution remote sensing imagery and particularly in the challenging
multispecies forest classification and encroachment species early detection. Besides the
constant advances of the algorithms, the integration multi-modal data source might be
worth investigating given a set or limited spatial resolution [40].

5. Conclusions

In this study, we investigated the potential of UAS based RGB remote sensing and four
semantic segmentation algorithms (decision tree, random forest, AlexNet, and ResNet) on
the early detection of ERCs and the classification and delineation of ERCs in a multi-species
forest context. The size of the ERCs in an early and singular form was within 0.6 m and 3.5
m. We also investigated the change of performance under the original and downsampled
image resolutions (0.694 cm, 1 cm to 5 cm with 0.5 cm interval). In the multi-species forest
context, the ResNet performed the best on the ERC classification with an OA of 0.918 and
a mloU of 85.0%, followed by the AlexNet with 0.878 and 78.2%. The decision tree and
random forest models trained in this study had lower OAs and mloUs. With downsampled
spatial resolutions, the ERC segmentation performance dropped significantly when the
spatial resolution lower than 3 cm. At a spatial resolution of 5 cm, early stage singular
ERCs with a diameter less than 1 m was failed to be detected by the ResNet which had the
best performance with images in the original resolution.

As ERC has been posing a serious threat to the biodiversity and rangeland produc-
tivity on the Great Plains, developing remote sensing technologies and associated data
analysis techniques to closely monitor its encroachment status especially at an early growth
stage is critical to a successful and effective management. The ultra high resolution RGB
imagery collected by UAS in this study provided an example dataset to investigate the
potential of ERC early detection in a singular form and its delineation for infilling rate
monitoring in a multi-species forest context. As the rapid development of remote sensing
technology and the arrival of long-endurance UAS and high resolution satellite imagery;,
we concur with many other studies in this area and envision that data modality, genera-
tion, and analytics are among the key research topics to answer how to utilize the latest
remote sensing technologies and techniques to improve encroachment species monitoring
and management.
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